Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Veysel T. Yilmaz, ${ }^{\text {a* }}$ Sevim Hamamci ${ }^{\text {a }}$ and Carsten Thöne ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Science, Ondokuz Mayis University, 55139 Kurupelit Samsun, Turkey, and ${ }^{\mathbf{b}}$ Institut für Anorganische und Analytische Chemie,
Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: vtyilmaz@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=133 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.026$
$w R$ factor $=0.074$
Data-to-parameter ratio $=19.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Diaquabis(2-pyridylethanol-N,O)cobalt(II) disaccharinate

The title complex, $\left[\mathrm{Co}(\text { pyet })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](\mathrm{sac})_{2}\left(\mathrm{sac}^{-}\right.$is the saccharinate anion, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}^{-}$, and pyet is 2-pyridylethanol, $\left.\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}\right)$ contains sac ${ }^{-}$ions and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { pyet })_{2}\right]^{2+}$ cations, in which the Co^{2+} ion lies on a centre of symmetry and is octahedrally coordinated by two water and two neutral pyet molecules, which act as N - and O -donor bidentate ligands forming two symmetrically-related six-membered chelate rings. The crystal packing is determined by hydrogen bonding, as well as weak $\mathrm{sac}^{-}-\mathrm{sac}^{-} \pi-\pi$-stacking interactions, resulting in a three-dimensional network.

Comment

Saccharin, chemically known as o-sulfobenzimide, is the most widely used artificial sweetener. Its deprotonated form, the saccharinate anion $\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}\right)^{-}\left(\mathrm{sac}^{-}\right)$, readily coordinates to metal ions, forming stable metal complexes in the solid state. This study is a continuation of our research on the synthesis and structural characterization of complexes of metal saccharinates with other ligands containing hydroxymethyl and hydroxyethyl groups, such as monoethanolamine (Andac et al., 2000, Yilmaz, Andac et al., 2001; Yilmaz, Topcu et al., 2001), monoethanolethylenediamine (Yilmaz et al., 2002), diethanolamine (Yilmaz, Topcu et al., 2001), triethanolamine (Topcu et al., 2001), dimethanolpyridine (Andac et al., 2002) and 2-pyridylethanol (Hamamci et al., 2002a). In this paper, we report the structure of the 2-pyridylethanol (pyet) complex of cobalt(II) saccharinate, viz. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { pyet })_{2}\right]-$ $(\mathrm{sac})_{2},(\mathrm{I})$.

(I)

The structure of (I) is shown in Fig. 1, and the chemical unit consists of a complex cation, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { pyet })_{2}\right]^{2+}$, and two sac^{-}anions. In the complex cation, the $\mathrm{Co}^{\mathrm{II}}$ ion lies on an inversion centre and is octahedrally coordinated by a pair of neutral pyet ligands and two water molecules, forming a $\mathrm{CoN}_{2} \mathrm{O}_{4}$ core. The sac^{-}ions are not in the primary coordination sphere, being separate counter-ions. Each pyet ligand behaves as a bidentate ligand through the N and hydroxyl O

Received 31 October 2002 Accepted 4 November 2002 Online 15 November 2002

Figure 1
A molecular view of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { pyet })_{2}\right](\mathrm{sac})_{2}$ (40% displacement ellipsoids). [Symmetry code: (i) $-x,-y,-z$.]

Figure 2
Packing diagram of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { pyet })_{2}\right](\mathrm{sac})_{2}$, showing the hydrogenbonding scheme.
atoms, forming a six-membered chelate ring with the $\mathrm{Co}^{\mathrm{II}}$ ion. The two pyet ligands form the equatorial plane of the coordination octahedron, while two water molecules occupy the axial positions with a trans configuration. Some distortion of the metal coordination sphere from regular octahedral geometry is apparent, especially in the $\mathrm{O}_{\text {water }}-\mathrm{Co}-\mathrm{N}_{\text {pyet }}$ angles (Table 1).

Both sac ${ }^{-}$(C11-C16/C21/O21/N1/S1) and pyet (C31-C36/ N 2) are essentially planar, with an r.m.s. deviation of $c a 0.01$ and $0.04 \AA$, respectively, but the OH group deviates significantly from the pyet plane by ca $1 \AA$. Furthermore, the Co^{2+} ion lies in the pyet plane. The crystal packing of the title compound is shown in Fig. 2. It exhibits parallel stacking of pairs of the sac^{-}ions and thus results in weak $\pi-\pi$ interactions ($>4.0 \AA$; the planes are defined by atoms C11-C16/S1/N1/C21/ O 21 and $\mathrm{Ni} / \mathrm{N} 2 / \mathrm{C} 31-\mathrm{C} 36$ for sac^{-}and pyet, respectively). The

H atoms of the water molecules (O4) and hydroxyl group (O3) of pyet form $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the sulfonyl O (O1) and carbonyl (O21) O atom of neighbouring sac ${ }^{-}$anions. Additionally, two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions between H atoms of the pyridine ring and the carbonyl and sulfonyl O atoms of the adjacent sac^{-}ions occur. The hydrogen bonds and weak $\pi-\pi$ interactions stabilize the crystal structure, forming a three-dimensional network.

The title compound is isostructural with the corresponding nickel(II) complex (Hamamci et al., 2002b).

Experimental

Previously prepared $\left[\mathrm{Co}(\mathrm{sac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(1.0 \mathrm{mmol}, \quad 0.53 \mathrm{~g}$; Haider et al., 1985) was dissolved in methanol (30 ml) at 303 K with stirring. Pyet $(0.25 \mathrm{~g}, 2.0 \mathrm{mmol})$ was then added to the solution dropwise. The resulting solution was left to stand at room temperature and allowed to evaporate slowly for crystallization. Yellow single crystals, obtained within a week, were collected by suction filtration, washed with acetone and dried in air.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$--
$\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}\right)_{2}$
$M_{r}=705.61$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=8.8391$ (6) A
$b=8.7910$ (6) \AA
$c=19.1564(12) \AA$
$\beta=100.876$ (3) ${ }^{\circ}$
$V=1461.80(17) \AA^{3}$
$Z=2$
Data collection
Bruker SMART 1000 CCD
diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.833, T_{\text {max }}=0.928$
27599 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.074$
$S=1.04$
4281 reflections
217 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.603 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7972 reflections
$\theta=2.2-30.5^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=133$ (2) K
Prism, yellow
$0.24 \times 0.21 \times 0.16 \mathrm{~mm}$

4281 independent reflections 3827 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-26 \rightarrow 26$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0486 P)^{2}\right. \\
& \quad+0.2616 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.48 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{O} 3$	$2.0855(8)$	$\mathrm{Co}-\mathrm{N} 2$	$2.1303(9)$
$\mathrm{Co}-\mathrm{O} 4$	$2.1087(8)$		
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Co}-\mathrm{O} 4$	$88.28(3)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{N} 2$	$89.85(3)$
$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 4$	$91.72(3)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Co}-\mathrm{N} 2$	$86.98(3)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co}-\mathrm{N} 2$	$90.15(3)$	$\mathrm{O} 4-\mathrm{Co}-\mathrm{N} 2$	$93.02(3)$

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{O} 21^{\text {iv }}$	0.95	2.64	3.3559 (15)	133
$\mathrm{C} 33-\mathrm{H} 33 \cdots \mathrm{O} 1^{\text {ii }}$	0.95	2.44	3.3295 (14)	156
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {iii }}$	0.823 (17)	2.010 (18)	2.8270 (12)	172 (1)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 21^{\text {i }}$	0.827 (18)	1.830 (18)	2.6433 (11)	168 (1)

Symmetry codes: (i) $-x,-y,-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $1-x,-y,-z$; (iv) $-x, 1-y,-z$.

The H atoms of the hydroxyl group and water molecules were refined freely, while H atoms bonded to carbon were included using a riding model, starting from calculated positions.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

This work was financially supported by the Research Fund of Ondokuz Mayis University. SH is also grateful to TUBITAK for an MSc scholarship.

References

Andac, O., Topcu, Y., Yilmaz, V. T. \& Harrison, W. T. A. (2000). J. Chem. Crystallogr. 30, 767-771.
Andac, O., Guney, S., Topcu, Y., Yilmaz, V. T. \& Harrison, W. T. A. (2002). Acta Cryst. C58, m17-m20.
Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 4.0), Bruker AXS Inc., Madison, Wisconsin, USA.
Haider, S. Z., Malik, K. M. A. \& Ahmed, K. J. (1985). Inorg Synth. 23, 47-51.
Hamamci, S., Yilmaz, V. T. \& Thöne, C. (2002a). Acta Cryst. E58, m369-m371.
Hamamci, S., Yilmaz, V. T. \& Thöne, C. (2002b). Acta Cryst. E58, m700-m701.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP (Version 5.03). Siemens Analytical X-ray Instruments Inc., Wisconsin, Madison, USA.
Topcu, Y., Yilmaz, V. T. \& Thöne, C. (2001) Acta Cryst. E57, m600-m602.
Yilmaz, V. T., Andac, O., Topcu, Y. \& Harrison, W. T. A. (2001). Acta Cryst. C57, 271-272.
Yilmaz, V. T., Topcu, Y., Yilmaz, F. \& Thöne, C. (2001). Polyhedron, 20, 32093217.

Yilmaz, V. T., Karadag, A. \& Thöne, C. (2002). J. Coord. Chem. 55, 609-618.

